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1 Introduction

Recent architecture trends show that DRAM density scal-
ing is facing significant challenges and will hit a scal-
ability wall at 40nm [4, 5]. Additionally, power con-
straints will also limit the amount of DRAM installed in
future systems [3]. To support next generation systems,
technologies such as Phase Change Memory (PCM) and
Memristor are being developed as DRAM replacements.
These memories offer latencies that are orders of mag-
nitude lower than either disk or flash and are compara-
ble to DRAM. Not only are they byte-addressable like
DRAM but, in addition, they are non-volatile. Projected
cost analysis [3] and power-efficiency characteristics of
Non-Volatile Byte-addressable Memory (NVBM) lead us
to believe that it can replace both disk and memory in
data stores (e.g., databases, NoSQL systems, etc.) but not
through legacy block or file systems interfaces. The over-
head of these interfaces will dominate NVBM’s nanosec-
ond access latencies and furthermore, these interfaces im-
pose a two-level logical separation of data, differentiat-
ing between in-memory vs. on-disk copies of data. Tra-
ditional data stores have to both update the in-memory
data and, for durability, sync the data to disk with the help
of a write-ahead log. Not only does this data movement
use extra power and reduce performance for low latency
NVBM, the logical separation also reduces the capacity
of an NVBM system.

Instead, we propose a single-level NVBM hierarchy
where no distinction is made between a volatile and a per-
sistent copy of data. With a single-level NVBM store,
we need to ensure that data structures will never be left
in an inconsistent state. Unfortunately, processors today
do not provide the necessary extensions to prevent writes
from being flushed from cache to memory and given that
the memory controller can reorder cache line writes, cur-
rent mechanisms for updating data structures are likely to
cause corruption in the face of failures.

To address the above requirements for NVBM, we pro-
pose the use of Consistent and Durable Data Structures
(CDDSs), a design that allows for the creation of log-less
storage systems on non-volatile memory without proces-
sor modifications. These data structures allow mutations
to be safely performed directly (using loads and stores) on
the single copy of data. Instead of using write-ahead log-
ging or shadow paging, we have architected CDDSs to use
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Figure 1: CDDS B-Tree

versioning. Independent of the size of an update, version-
ing allows the CDDS to atomically move from one con-
sistent state to the next. Failure recovery simply restores
the data structure to the most recent consistent version.
Garbage collection is run in the background and helps
limit the space utilization by eliminating entries which
will not be referenced in the future. Further, we have
developed primitives for atomic and durable updates us-
ing hardware support found in existing processors making
CDDSs applicable without any processor modifications.

2 Consistent Durable Data Structures

A CDDS is built by maintaining a limited number of
versions of the data structure with the constraint that an
update should not weaken the structural integrity of an
older version and that updates are atomic. This versioning
scheme allows a CDDS to provide consistency without the
additional overhead of logging or shadowing. A CDDS
thus provides a guarantee that a failure between opera-
tions will never leave the data in an inconsistent state. As a
CDDS never acknowledges completion of an update with-
out safely committing it to non-volatile memory, it also
ensures that there is no silent data loss

Internally, a CDDS maintains the following properties:

e There exists a version number for the most recent
consistent version. This is used by any thread which
wishes to read from the data structure.

e Every update to the data structure results in the cre-
ation of a new version.

e During the update operation, modifications ensure
that existing data representing older versions are
never overwritten. Such modifications are performed
by either using atomic operations or copy-on-write
style changes.

e After all the modifications for an update have been
made persistent, the most recent consistent version
number is updated atomically.

As an example of a CDDS, we have designed and
implemented a consistent and durable version of a B-
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Tree [7]. While inspired by previous work on multiver-
sion data structures [6], our focus on durability required
changes to the design and impacted our implementation.
In a CDDS B-Tree, the key and value stored in an unmod-
ified B-Tree entry is augmented with a start and end ver-
sion number. A simplified example of a CDDS B-Tree is
shown in Figure 1. An entry is considered ‘live’ if it does
not have an end version (displayed as a ‘—’ in the figure).
To bound space utilization, in addition to ensuring that a
minimum number of entries in a B-Tree node are used, we
also maintain a minimum number of live entries in each
node. The CDDS B-Tree supports lookup, insert, and
delete operations. Detailed algorithms for each of these
operations can be found in our paper [7]. Additionally,
our implementation also supports features such as leaf it-
erators and range scans. We believe that CDDS version-
ing lends itself to other powerful features such as instant
snapshots and integrated NVBM wear-leveling. Our cur-
rent CDDS B-Tree implementation uses a multiple-reader,
single-writer model. However, the use of versioning lends
itself to more complex concurrency control schemes in-
cluding multi-version concurrency control (MVCC) and
we are exploring different concurrency control schemes
for CDDSs as a part of our ongoing work.

Finally, apart from multi-version data structures,
CDDSs have also been influenced by Persistent Data
Structures (PDSs) [2]. The “Persistent” in PDS does not
actually denote durability on persistent storage but, in-
stead, represents immutable data structures where an up-
date always yields a new data structure copy and never
modifies previous versions. The CDDS B-Tree presented
above is a weakened form of semi-persistent data struc-
tures. We modify previous versions of the data structure
for efficiency but are guaranteed to recover from failure
and rollback to a consistent state. However, the PDS con-
cepts are applicable, in theory, to all linked data struc-
tures. Using PDS-style techniques, we have implemented
a proof-of-concept CDDS hash table and we are confident
that CDDS versioning techniques can be extended to a
wide range of data structures.

2.1 Evaluation

As NVBM is not commercially available yet, we used
DRAM-based servers to evaluate our proposed design.
Previous studies have shown that DRAM-based results
are a good predictor of NVBM performance. To com-
pare the benefits of versioning over logging, we compare
the CDDS B-Tree performance for puts, and gets to a
memory backed Berkeley DB’s (BDB) B-Tree implemen-
tation. For this experiment, we insert and fetch 1 mil-
lion key-value tuples into each system. After each oper-
ation we flush the CPU cache to eliminate any variance
due to cache contents. The results, displayed in Figure 2,
show that, for memory-backed BDB in durable mode, the
CDDS B-Tree improves throughout by 74% and 138% for
puts and gets respectively. These gains come from not us-
ing a log (extra writes) or the file system interface (system
call overhead). If zero-overhead epoch-based hardware
support [1] was available, the CDDS volatile numbers
show that performance of puts would increase by 80% as
flushes would never be on the critical path. We do not
observe any significant change for gets as the only differ-
ence between the volatile and durable CDDS is that the
flush operations are converted into a noop. Finally, to
measure the versioning overhead, we compared a volatile
CDDS B-Tree to a normal B-Tree. While not shown in
Figure 2, volatile CDDS’s performance was lower than
the in-memory B-Tree by 24% and 13% for puts and gets.
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